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1 Generating the inequalities

If a face-turning octahedron can be built with n layers physically with all parts
anchored into the core, it can be modeled as a unit sphere with cuts placed
at certain depths. Letting axes a1 = 1√

3
(−1, 1, 1), a2 = 1√

3
(1,−1, 1), a3 =

1√
3
(1, 1,−1), and a4 = 1√

3
(1, 1, 1), the puzzle can be made by placing the cuts

at depths d−n+2, d−n+4, . . . , dn−4, dn−2 along each of these axes. We can call
the layers on axis ai between these cuts Li−n+1, L

i
−n+3, . . . , L

i
n−3, L

i
n−1. We

must have that
di+1 < di−1. (Di)

To ensure symmetry, we have that d−i = −di. This implies that d0 = 0 when
n is even and d1 > 0 when n is odd (collectively the M inequality). We define
the matrix A =

[
a1 a2 a3

]
.

In order for this system of cuts to define a valid face-turning octahedron, pos-
sibly with extra piece types, every part expected on a face-turning octahedron,
defined by the intersections of four layers from different axes, must intersect the
surface of our sphere. There are four kinds of parts of a face-turning octahedron:
the corners, the edges, and two kinds of centers. Without loss of generality, I
will only be considering representative pieces from each piece orbit.

The corners are the intersection of L1
−n+1, L2

n−1, L3
n−1, and L4

n−1. The

region is shaped like an infinite square cone with vertex (
√

3dn−2, 0, 0), and so
for it to intersect the sphere, we must have that

dn−2 < γ (V)

where γ = 1√
3
.

The edges are the intersection of L1
−i, L

2
i , L

3
n−1, and L4

n−1 for −n+ 3 ≤ i ≤
n− 3. If inequality V is satisfied, the point

1

2
(
√

3d+
√

2− 3d2,−
√

3d+
√

2− 3d2, 0),

where d = di+1+di−1

2 , is in the intersection and on the surface of the sphere.
Thus, no new inequalities need to be added to the system.
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The centers are the intersection of L1
i , L

2
j , L

3
k, and L4

n−1. They come in two
types: tetrahedral centers have i+ j + k = n+ 1 and −n+ 1 ≤ i, j, k ≤ n− 1,
and octahedral centers have i + j + k = n − 1 and −n + 3 ≤ i, j, k ≤ n − 3.
Geometrically, the two types of centers differ by the angle of the cuts that
bound them: tetrahedral centers are defined by cuts that slant at an acute
angle going into the body of the puzzle, and octahedral centers have cuts that
slant outward. These give them their tetrahedral and octahedral shapes. The
intersection of these four layers in general can form many shapes, but because
of the V inequality, we can ignore the layer on axis 4. The intersection of the
remaining three layers is a rhombohedron whose inner and outer vertices are at

A−1

di±1dj±1
dk±1


respectively. In order for this to intersect the sphere, the inner vertex must be
inside the sphere (or otherwise behind it), and the outer vertex must be outside
the sphere, resulting in the inequalities

[
di−1 dj−1 dk−1

]
(AAT )−1

di−1dj−1
dk−1

 < 1 ∨ (a1 + a2 + a3) ·

di−1dj−1
dk−1

 < 0

(FIi−1,j−1,k−1)
and [

di+1 dj+1 dk+1

]
(AAT )−1

di+1

dj+1

dk+1

 > 1 (FOi+1,j+1,k+1)

When one of i, j, k = n− 1, the FOi+1,j+1,k+1 inequality is not necessary. The
second condition in the FI family is necessary because without it, some especially
large pieces would not satisfy the inequalities. The set of inequalities can also
be reduced in size. Firstly, i, j, k are symmetric. Secondly, if FIi+1,j,k, FIi,j+1,k,
FIi,j,k+1, and FIi,j,k all exist, then the final inequality is satisfied when the other
three are, and it is redundant, and likewise with FOi−1,j,k, FOi,j−1,k, FOi,j,k−1,
and FOi,j,k.

2 Solving the inequalities

Solving the inequalities can be accomplished with a divide-and-conquer algo-
rithm. There are dn2 e − 1 unknowns, so we can start the search algorithm on
the domain

D0 = [0, γ]
dn2 e−1

which ensures the V and M inequalities will be satisfied. Starting on a larger
domain is also fine given that we check V and M explicitly.

Given an axis-aligned cuboidal domain D, to check if there is a solution to
the inequalities, we first check every inequality individually. The D inequali-
ties define half-spaces, so it suffices to check the vertices for a solution. The
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PO inequalities define the exterior of a solid ellipsoidal cylinder, which when
intersected with D0 becomes axis-convex (any axis-aligned line segment with
endpoints in the region is completely contained within the region), and thus
it also suffices to check only the vertices of D for a solution. Finally, the PI
inequalities define the union of the interior of said ellipsoidal cylinder and a
half-space, so it suffices to check the vertices of D for a solution to each term
individually.

If any inequality is satisfied on none of the vertices of D, it must have no
solution in D either, and so the system has no solutions. If one vertex of D
satisfies all inequalities, then a solution has been found. Otherwise, D is split
into 2d

n
2 e−1 smaller boxes, and the search algorithm is repeated on all of them.

If a face-turning octahedron of order n exists, by removing every other cut, it
should produce a valid face-turning octahedron of order dn2 e. This is one possible
way to show that there is a maximum order of face-turning octahedron.

3 Generalization

The procedure used to find the limit of the face-turning octahedra can also be

used on other types of puzzles. With φ the golden ratio, replacing a1 = (φ,−1,0)√
φ2+1

,

a2 and a3 by cyclic permutations of a1, and γ = 1√
5
, the procedure can

be applied to the Icosamate series. Replacing a1 = (1, 0, 0), a2 = (0, 1, 0),
a3 = (0, 0, 1), and γ = 1√

2
, the procedure can be applied to edge-turning tetra-

hedra (the Mastermorphynx series), although viewing them as equivalent to
face-turning cubes shows that the highest order is n = 3.

I believe a similar approach could be used to show that there is a limit in this
sense for the Pyraminx, corner-turning octahedron, and shallow corner-turning
icosahedron series.

4 Results

The program is at https://github.com/milojacquet/octlimit-haskell. I
ran the program for every octahedron up to order 18, and it returned cut depths
for all octahedra of order 13 or less, which are shown in the following table.
Orders 14 through 18 were impossible. These are not necessarily the simplest
sets of cut depths, just the first ones found by the program. For conciseness, the
numerators are provided in the table and their common denominator is shown
separately.
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n d0, d1 d2, d3 d4, d5 d6, d7 d8, d9 d10, d11 denom.
3 1 2
4 0 1 2
5 1 2 4
6 0 1 2 4
7 751 3072 4096 8192
8 0 4 6 9 16
9 3 4 8 9 16
10 0 13 24 32 36 64
11 271 512 906 1024 1152 2048
12 0 789 1463 1944 2218 2364 4096
13 6079 18624 27444 33733 36564 37837 65536

For the icosahedron, I was only able to run the program up to order 16. The
results are in the table below, in the same format.

n d0, d1 d2, d3 d4, d5 d6, d7 d8, d9 d10, d11 d12, d13 d14 denom.
3 1 4
4 0 1 4
5 1 2 8
6 0 1 3 8
7 1 2 3 8
8 0 1 2 3 8
9 1 3 4 6 16
10 0 3 7 9 12 32
11 4 8 15 20 24 64
12 0 1 3 4 5 7 16
13 2 3 7 8 12 13 32
14 0 1 2 4 5 6 7 16
15 1 2 3 4 5 6 7 16
16 0 2 4 7 8 10 12 14 32
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